Dr. Nese Sreenivasulu Research Page

Head, Grain Quality and Nutrition Center, International Rice Research Institute, Metro Manila, Philippines

Dr. Nese Sreenivasulu has 15 years of research experience in plant functional genomics. Since 2013, he is Head of Grain Quality and Nutrition Center at International Rice Research Institute. He provides scientific leadership for IRRI's research program on grain quality and nutritional value using multi-disciplinary approaches such as genomics, genetics, and biochemistry. Previously he employed as Head of Stress Genomics group of Interdisziplinäres Zentrum für Nutzpflanzenforschung (IZN) at Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) addressing the molecular mechanisms of stability of seed yield under drought mainly addressing altered grain number and seed filling efficiency. He holds an adjunct position in the school of Plant Biology at the University of Western Australia.

Educational Background and Professional experience: In 1995 he obtained an M.Phil degree in Seed Technology from the University of Mysore. He then moved to IPK and established a genomics platform in a barley crop. Using this genomics platform he studied seed development of barley grain in a model mutant system seg8 and obtained his Ph.D. degree from Martin Luther University, Germany in 2002. Following completion of the Ph.D., he continued as a Post-Doctoral Research scientist at IPK and revealed regulatory networks operate during barley seed development using introgression line population. During 2007, he is employed as Project Leader engaging in coordinating a major project funded by the German Ministry (BMBF) entitled “SEEDs for the FUTURE: developing barley lines with improved yield and grain quality under drought stress during seed filling (GABI-GRAIN)”. In addition, he is also involved in additional grants, leading research towards systems biology, where ‘developing barley seed’ is the main objective.

Scientific background: Dr. Sreenivasulu has an excellent publication record, published more than 100 research articles in esteemed international journals of repute with high impact factors (Nature Genetics, Nature Plants, Scientific Reports, Annual Review of Plant Biology, Trends in Plant Science, PNAS, Plant Journal, Plant Physiology, Plant Molecular Biology, Plant Biotechnology Journal, Genetics, Frontiers in Plant Science, International Review of Cell and Molecular Biology, Molecular Genetics and Genomics, Functional Integrative genomics, New Phytologist, Theoretical and Applied Genetics, Molecular Breeding, Gene, Physiologia Plantarum, Plant science, Journal of Plant Physiology, Cell Biology International, Current Science, BMC Bioinformatics, BMC Plant Biology, Frontiers in Plant Science etc). In addition, 25 book chapters and 10 proceedings have been published.

Leadership: Providing scientific leadership for IRRI’s research on grain quality (physical, sensory, cooking) and nutritional qualities of rice research using holistic approaches such as biochemistry, genetic, and genomics. Dr. Sreenivasulu is responsible for implementing grain quality research, including overseeing more than 35 staff, analytical services, and other resources in IRRI’s Grain Quality Nutrition Center. Developing stronger partnerships with leaders of other IRRI Programs to ensure full integration of grain quality and nutrition research and analytical services in IRRI’s varietal improvement programs, towards creating product-oriented breeding pipelines that meet the demand of rice farmers, millers, processors, and consumers.

Coordination: Coordinated 5 mega projects worth of multi-million US Dollars and also participated as a principal investigator in several projects in the area of abiotic stress tolerance, seed biology, grain quality, and nutrition. The successful outcome of the teamwork is documented as a list of publications in a separate section.

Ongoing grants at IRRI:

BMZ Heat second phase II, Heat resilient varieties with reduced impact of combined high day and high night temperatures on rice productivity with added premium grain quality for improving livelihoods in South and Southeast Asia (Coordinator: Nese Sreenivasulu, 1.33 Million USD)


Improving the nutritional value and digestibility of rice to address double burden malnutrition in the Philippines and Thailand (Coordinator: Lesley Boyd, Co-PI: Nese Sreenivasulu, Matty Demont 1.2 Million USD)


Establishment of Centre of Excellence in Rice Value Addition under IRRI South Asian Regional Centre in Vranasi, program funded by Government of India, Ministry of Agriculture and Farmers Welfare. Project budget of 13 Million USD [PI: Nese Sreenivasulu, M.K. Morell and U.S. Singh]


Rice Agri-food system (RAFS) CRP program funded by CGIAR program (75 million USD; participated as lead cluster 5.5 and 2.4 with 2.5 Million USD dedicated to grain quality activities).


Increasing the health potential in rice by lowering glycaemic index response in high yielding lines, funded by IRRI-ICAR collaborative work program project (500,000 USD) from 2017 till 2022 [Co-PI: Nese Sreenivasulu]


Accelerated genetic gains in rice alliance (AGGRi), funded by Bill and Melinda Gates Foundation, (30 Million USD); from 2019 to 2023 [Coordinator: Joshua Cobb, Nese Sreenivasulu participated as Co-PI for grain quality lead]


Predicting cooking and eating quality ideotypes through modeling and marker discovery, Framework Agreement under, (2.5 Million USD) from 2019 to 2023 [Corteva Agrisciece Chair and Coordinator for grain quality lead: Nese Sreenivasulu]


Projects completed at IRRI:


Stress-tolerant rice for poor farmers in Africa and South Asia (STRASA) (Phase 3), funded by Bill and Melinda Gates Foundation, (33 Million USD); from 2014 to 31st March 2019 (participated as Co-PI for grain quality lead)


Reducing impacts of high night temperature on rice harvests and farmers livelihoods in South Asia and South East Asia, funded by BMZ (1.2 Million Euro) from 2017 till December 2019 [Coordinator: Nese Sreenivasulu]


Molecular characterization and genetic analysis of nutritional compounds of Philippine indigenous pigmented rice germplasm (NutrientRice) (793,228 British pounds; IRRI funds of 153,635 British pounds) 2016-July 2019 [Coordinator: Lesley Boyd and CoPI Nese Sreenivasulu/Tobias Kretzschmar]


Enhanced cooking quality of rice, funded by Syngenta SKEP III project (525,000 USD) from 2016- July 2019 [Coordinator: Nese Sreenivasulu]


A genetic diversity platform to enhance development of climate resilient and nutritious rice , Taiwan-IRRI collaborative project, funded by Council of Agriculture of the Republic of China (Taiwan) from 2016 till December 2019 [Co-ordinator: Hei Leung, Co-PI Nese Sreenivasulu, project 4 Development of low glycemic index rice varieties (200,000 USD)]


Slower digesting rice varieties, funded by ICAR-IRRI collaborative project (450,000 USD) from January 2013 till December 2016 [Co-PI: Nese Sreenivasulu]


Enhanced rice quality for health (EnRicH), Newton funding initiative funded by BBSRC, UK (650,000 British pound; IRRI funding of 314,000 USD) 2016-Decemeber 2018 [Coordinator: Alison Lovegrove and CoPI Nese Sreenivasulu]


Identification and validation of functional markers from diverse germplasm to reduce chalk in rice breeding materials, funded by Australian Centre for International Agricultural Research – Australia, from 1st May 2014 till 30th April 2016 (100,000 AusDollars) [Coordinator: Nese Sreenivasulu]


Breeding for low chalk in rice, funded by Australian Centre for International Agricultural Research – Australia, from 1st February 2017 till 31st December 2018 (150,000 AusDollars) [Coordinator: Nese Sreenivasulu]


Proviivi collaborations on Field efficacy trials in the Philippines for Pheromones against rice stem borers (526,000 USD), from January 2018 to November 2018 [Coordinator: Buyung Hadi and CoPI Nese Sreenivasulu]

Projects completed at IPK:

BMBF: SEEDS for the FUTURE: Developing barley lines with improved yield and grain quality under drought stress during seed filling (GABI-GRAIN). Project budjet: 2.1 Million Euros, Project duration: 2007 to 2010 (Coordinator: N. Sreenivasulu and Co-coordinator: U. Wobus). GABI-GRAIN Webpage

BMBF: Integrated modelling of the primary metabolism of the developing barley endosperm as influenced by hormonal modulations (GABI-SysSEED). Project budjet: 1.7 Million Euros, Project duration: 2007 to 2010 (involved in WP B2). GABI-SysSEED Webpage

BMBF International Büro-DBT joint project: Transcriptome based identification of overlapping responses of salt and drought tolerance and comparative genome mapping-tagging of stress responsive genes. Project budjet: 6.140,00 Euro + Sixty lakhs Rupees, Project duration: 2008 to 2010 (German Coordinator: N. Sreenivasulu and Indian Coordinator: M. Prasad). IB-BMBF-DBT project Webpage

BMBF International Büro (Germany) - Department of Science and Technology (India) joint project funding: “Developing sustainable transgenic crop plants for drought or a combination of drought and heat stress by manipulating ABA signaling and Ascorbate- Glutathione pathways (PRO-DROUGHT)”. Total Project budget of German funding: 400,000 Euro + 314,200 Euro Indian funding, plus travel grants between the two countries. Project duration: 12/2010 to 11/2013. [Coordinator: Nese Sreenivasulu]

BMELV funding: “Developing stress tolerant barley lines with improved seed set and yield during anthesis” (SEED-SET). Total Project budget: 719,324 Euro. Project duration: 02/2011 to 01/2014. [Coordinator: Nese Sreenivasulu]

Research group establishment by the funding of Ministery of Culture of Saxony-Anhalt in the frame of the Interdisziplinäres Zentrum für Nutzpflanzenforschung (IZN): “Exploring yield enhancement genes influencing grain number and seed growth under drought”. Total Project budget: 625,300 Euro. Project duration: 11/2010 to 10/2015. [Head of the group Stress Genomics: Nese Sreenivasulu]

BMZ funding of a joint project between IPK (Germany) and IRRI (Phillipines): “From QTLs to Variety: pyramiding major drought-responsive QTLs for sustainable rice yields in Asia and Africa” Total Project budget: 1.2 Million Euro. (Own Project budget: 210,000 Euro). Project duration: 01/2011 to 12/2013. [Coordinator: Aravind Kumar]

BMBF funding: “Developing drought sustainable genotypes with improved seed yield and quality suitable for malting (InnoGRAIN-MALT)”. Total Project budget: 1.16 Million Euro. (Own Project budget: 437,132 Euro). Project duration: 01/2012 to 12/2014. [Coordinator: Viktor Korzun]

Awards and Fellowships:

  • Third Rank in M.Sc., Botany, 1995

  • DAAD Fellow, 1998

International/National Scientific activities:

Reviewer for Journals:

  • Annals of Botany

  • BMC Systems Biology

  • BMC Plant Biology

  • Carbohydrate Polymers

  • FEBS,

  • Frontiers in Plant Science

  • Functional and Integrative Genomics

  • Journal of Plant Physiology

  • Journal of Agronomy and Crop Science

  • Molecular Genetics and Genomics,

  • Molecular Breeding

  • Molecular Biology Reports

  • Molecular Plant

  • New Phytologist

  • Nature Communications

  • Proteomics

  • Planta

  • Plant Cell Reports

  • Plant and Cell Physiology

  • Plant Molecular Biology,

  • Plant Biotechnology Journal

  • Plant Physiology

  • Plos One

  • The Plant Cell

  • Trends in Plant Science

Editorial Board member:

  • BMC Plant Biology (Associate Editor)

  • Plant Cell Reports (Associate Editor)

  • Frontiers in Plant Science (Review Editor)

  • Field Crop Research

  • The Genome

Reviewer for grant applications:

  • National Science Foundation (NSF), USA

  • United States-Israel Binational Science Foundation (BSF)

  • The French National Research Agency (ANR)

Total Papers published:

Citation Index: For published papers of N. Sreenivasulu, in total 5386 citations were indexed by ISI with H-index value of 38 and as per Google Scholar database 9264 citations indexed with H-index value of 48.

Peer reviewed research papers published: 103

Peer reviewed book chapters published: 16

Peer reviewed proceedings published: 10

Research Publications ( * corresponding author, + contributed equally as first author)


I. Grain quality, Seed biology and Plant developmental genomics


  • 1. R.N. Jr Tiozon, D.H. Camacho, A.P. Bonto, G.G. Oyong, N. Sreenivasulu. Efficient fortification of folic acid in rice through ultrasonic treatment and absorption. Food Chemistry 335:127629, 2021. doi: 10.1016/j.foodchem.2020.127629.

  • 2. R.J.Q. Buenafe, V. Kumanduri and N. Sreenivasulu*. Deploying viscosity and starch polymer properties to predict cooking and eating quality models: a novel breeding tool to predict texture. Carbohydrate Polymers 260: 117766, 2021.

  • 3. E.A. Pasion, S. Badoni, G. Misra, R.S. Anacleto, S. Parween, A. Kohli, N. Sreenivasulu*. OsTPR boosts the superior grains through increase in upper secondary rachis branches without incurring a grain quality penalty. Plant Biotechnology Journal 2021. Online published, doi: 10.1111/pbi.13560.

  • 4. Y. Brotman, C. Llorente‐Wiegand, G. Oyong, S. Badoni, G. Misra, R. Anacleto, S. Parween, E. Pasion, R.N. Jr Tiozon, J.J. Anonuevo, M.K. deGuzman, S. Alseekh, E.G.N. Mbanjo, L.A. Boyd, A.R. Fernie and N. Sreenivasulu*. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. The Plant Journal 2021. Online published, doi: 10.1111/tpj.15182.

  • 5. R.J.N. Tiozon, A.R. Fernie and N. Sreenivasulu*. Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science and Technology 109: 65-82.

  • 6. G. Misra, S. Badoni, S. Parween, R.K. Singh, H. Leung, O.F. Ladejobi, R. Mott and N. Sreenivasulu*. Genome‐wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness. Plant Biotechnology Journal 2021. Online published, doi: 10.1111/pbi.13516

  • 7. A.P. Bonto, R.N. Tiozon Jr, N. Sreenivasulu* and DH Camacho. Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonics Sonochemistry, 71: 105383. doi: 10.1016/j.ultsonch.2020.105383.

  • 8. A.K. Jukanti, P.A. Pautong, Q. Liu, N. Sreenivasulu*. Low glycemic index rice- a desired trait in starchy staples. Trends in Food Science & Technology 106, 132-149, 2020. https://doi.org/10.1016/j.tifs.

  • 9. L. Huang, N. Sreenivasulu*, Q. Liu. Waxy Editing: Old Meets New. Trends in Plant Science 25(10): 963-966, 2020. doi: 10.1016/j.tplants.2020.07.009.

  • 10. S. Parween, J.J. Anonuevo, V.M. Jr Butardo, G. Misra, R. Anacleto, C. Llorente, O. Kosik, M.V. Romero, E.H. Bandonill, M.S. Mendioro, A. Lovegrove, A.R. Fernie, Y. Brotman, N. Sreenivasulu*. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms. Plant Biotechnology Journal 18(8):1763-1777, 2020. doi: 10.1111/pbi.13339.

  • 11. E.G.N. Mbanjo, T. Kretzschmar, H. Jones, N. Ereful, C. Blanchard, L.A. Boyd, N. Sreenivasulu*. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Frontiers in Genetics 11:229, 2020. doi: 10.3389/fgene.2020.00229.

  • 12. O. Kosik, M.V. Romero, E.H. Bandonill, R.G. Abilgos-Ramos, N. Sreenivasulu, P. Shewry, A. Lovegrove. Diversity of content and composition of cell wall-derived dietary fibre in polished rice. Journal of Cereal Science 96:103122, 2020. https://doi.org/10.1016/j.jcs.2020.103122

  • 13. A.P. Bonto, N. Jearanaikoon, N. Sreenivasulu, D.H. Camacho. High uptake and inward diffusion of iron fortificant in ultrasonicated milled rice. LWT Food Science and Technology 128, 109459, 2020. https://doi.org/10.1016/j.lwt.2020. 109459.

  • 14. R.N. Jr Tiozon, D.H. Camacho, A.P. Bonto, G.G. Oyong, N. Sreenivasulu. Dataset on the folic acid uptake and the effect of sonication-based fortification on the color, pasting and textural properties of brown and milled rice. Data in Brief. 32:106198, 2020. doi: 10.1016/j.dib.2020.106198.

  • 15. A.P. Bonto, R.N. Jr Tiozon, C. Rojviriya, N. Sreenivasulu, D.H. Camacho. Sonication increases the porosity of uncooked rice kernels affording softer textural properties, loss of intrinsic nutrients and increased uptake capacity during fortification. Ultrasonics Sonochemistry 68:105234, 2020. doi: 10.1016/j.ultsonch.2020.105234.

  • 16. V.M. Jr Butardo, C. Seiler, N. Sreenivasulu, M. Kuhlmann. Obtaining high-quality transcriptome data from cereal seeds by a modified method for gene expression profiling. JOVE-Journal of Visualized Experiments 159, e60602, 2020. DOI: 10.3791/60602.

  • 17. R. Anacleto, S. Badoni, S. Parween, V.M. Butardo Jr, G. Misra, R.P. Cuevas, M. Kuhlmann, T.P. Trinidad, A.C. Mallillin, C. Acuin, A.R. Bird, M.K. Morell, N. Sreenivasulu*. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnology Journal 17(7):1261-1275, 2019. doi: 10.1111/pbi.13051. [Five year impact factor: 6.3]

  • 18. G. Misra, R. Anacleto, S. Badoni, V. Butardo, L. Molina, A. Graner, M. Demont, M.K. Morell, N. Sreenivasulu*. Dissecting the genome-wide genetic variants of milling quality traits in rice. Journal of Experimental Botany 70(19):5115-5130, 2019. Doi:10.1093/jxb/erz256. [Five year impact factor: 5.3]

  • 19. T. Ishimaru, S. Parween, Y. Saito, T. Shigemitsu, H. Yamakawa, M. Nakazono, T. Masumura,N.K. Nishizawa,M. Kondo, N. Sreenivasulu*. Laser microdissection-based tissue specific transcriptome analyses reveals novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiology 60(3):626-642, 2019. doi: 10.1093/pcp/pcy233. [Five year impact factor: 4.8]

  • 20. C.M. Alhambra, M.K de Guzman, D.S. Sushil, A.P. Bonto, E.I. Dizon, K.A.C. Israel, V.M. Butardo, N. Sreenivasulu*. Long glucan chains reduce in vitro starch digestibility of freshly cooked and retrograded milled rice. Journal of Cereal Science 86:108-116, 2019. Doi:10.1016/j.jcs.2019.02.001.

  • 21. A. Lovegrove, O. Kosik, E. Bandonill, R.Abilgos-Ramos, M.Romero, N. Sreenivasulu, P. Shewry. Improving rice dietary fibre content and composition for human health. Journal Nutrition Science Vitaminology (Tokyo), 65 (supplement), S48-S50, 2019. Doi:10.3177/jnsv.65.S48.

  • 22. J.S. Lee, N. Sreenivasulu, R.S. Hamilton, A. Kohli. Brown rice, a diet rich in health promoting properties. Journal Nutrition Science Vitaminology (Tokyo), 65 (supplement), S26-S28, 2019. Doi:10.3177/jnsv.65.S26.

  • 23. R.P.O. Cuevas, C.J. Domingo, N. Sreenivasulu*. Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice 11(1): 56, 2018. doi: 10.1186/s12284-018-0245-y. [Five year impact factor: 4.4]

  • 24. G. Misra, S. Badoni, C.J. Domingo, R.P.O. Cuevas, C. Llorente, E.G.N. Mbanjo, N. Sreenivasulu*. Deciphering the genetic architecture of cooked rice texture. Frontiers in Plant Science 9:1405, 2018.. doi: 10.3389/fpls.2018.01405. [Five year impact factor: 3.9]

  • 25. H. Wang, W. Chen, K. Eggert, T. Charnikhova, H. Bouwmeester, P. Schweizer, M.R. Hajirezaei, C. Seiler, N. Sreenivasulu, N. von Wirén, M. Kuhlmann. Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany 69(16): 3883-3898, 2018. [Five year impact factor: 5.3]

  • 26. H.M. Youssef, K. Eggert, R. Koppolu, A.M. Alqudah, N. Poursarebani, A. Fazeli, S. Sakuma, A. Tagiri, T. Rutten, G. Govind, U. Lundqvist, A. Graner, T. Komatsuda, N. Sreenivasulu, T. Schnurbusch. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics 49(1):157-161, 2017. [Five year impact factor: 29.30]

  • 27. V.M. Butardo, R. Anacleto, S. Parween, I. Samson, K. Guzman, C.M. Alhambra, G. Misra, N. Sreenivasulu*. Systems genetics identifies a novel regulatory domain of amylose synthesis. Plant Physiology 173(1):887-906, 2017. [Five year impact factor: 8.0]

  • 28. V. Radchuk, D. Riewe, M. Peukert, A. Matros, M. Strickert, R. Radchuk, D. Weier, H.H. Steinbiß, N. Sreenivasulu, W. Weschke, H. Weber. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. Journal of Experimental Botany 68(16):4595-4612, 2017. [Five year impact factor: 5.3]

  • 29. G. Misra, S. Badoni, R. Anacleto, A. Graner, N. Alexandrov, N. Sreenivasulu*. Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice. Scientific Reports 7(1):12478, 2017. doi: 10.1038/s41598-017-12778-6. [Five year impact factor: 5.57]

  • 30. M.K. Guzman, S. Parween, V.M. Butardo, C.M. Alhambra, R. Anacleto, C. Seiler, A.R. Bird, C.P. Chow, N. Sreenivasulu*. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination. Scientific Reports 7(1):5854, 2017. doi: 10.1038/s41598-017-06026-0. [Five year impact factor: 5.57]

  • 31. V. Thirulogachandar, A.M. Alqudah, R. Koppolu, T. Rutten, A. Graner, G. Hensel, J. Kumlehn, A. Bräutigam, N. Sreenivasulu, T. Schnurbusch, M. Kuhlmann. Leaf primordium size specifies leaf width and vein number among row-type classes in barley. The Plant Journal 91(4):601-612, 2017. [Five year impact factor: 7.3]

  • 32. N. Sreenivasulu*. Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination. Plant Cell Reports 36(5):633-635, 2017. [Five year impact factor: 2.8]

  • 33. K. Surdonja, K. Eggert, M.R. Hajirezaei, V.T. Harshavardhan, C. Seiler, N.V. Wirén, N. Sreenivasulu, M. Kuhlmann. Increase of DNA methylation at the HvCKX2.1 promoter by terminal drought stress in barley. Epigenomes 1: 9, 2017. doi:10.3390/ epigenomes1020009

  • 34. M.R. Ghaffari, F. Shahinnia, B. Usadel, B. Junker, F. Schreiber, N. Sreenivasulu, M.R. Hajirezaei. The Metabolic Signature of Biomass Formation in Barley. Plant and Cell Physiology 57(9):1943-60, 2016 . [Five year impact factor: 4.8]

  • 35. V.M. Jr Butardo, N. Sreenivasulu*. Tailoring grain storage reserves for a healthier rice diet and its comparative status with cereals. International Review of Cell and Molecular Biology 323: 31-70, 2016. [Five year impact factor: 4.9]

  • 36. T.Kretzschmar, M.A.F. Pelayo, K.R. Trijatmiko, L. Franz, M. Gabunada, R.A. Rosario Jimenez, M.S. Mendioro, I.H. Slamet-Loedin, N. Sreenivasulu, J. Bailey-Serres, A.M. Ismail, D.J. Mackill and E.M. Septiningsih. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants 1: 15124, 2015. Doi:10.1038/nplants.2015.124

  • 37. R. Anacleto, R.P. Cuevas, R. Jimenez, C. Llorente, E. Nissila, R. Henry, N. Sreenivasulu*. Prospects of breeding high-quality rice using post-genomic tools. Theoretical and Applied Genetics 128(8):1449-66, 2015. [Five year impact factor: 3.78]

  • 38. N. Poursarebani, T. Seidensticker, R. Koppolu, C. Trautewig, P. Gawroński, F. Bini, G. Govind, T. Rutten, S. Sakuma, A. Tagiri, G.M. Wolde, H.M. Youssef, A. Battal, S. Ciannamea, T. Fusca, H.M. Youssef, T. Nussbaumer, C. Pozzi, A. Börner, U. Lundqvist, T. Komatsuda, S. Salvi, R. Tuberosa, C. Uauy, N. Sreenivasulu, L. Rossini, T. Schnurbusch. The Genetic Basis of Composite Spike Form in Barley and "Miracle-Wheat". Genetics 201(1): 155-165, 2015. [Five year impact factor: 5.9]

  • 39. N. Sreenivasulu* and U. Wobus*. Comparative seed development and its implications in addressing yield stability. Annual review of Plant Biology 64:189-217, 2013. [Five year impact factor: 28.4]

  • 40. R. Koppolu, N. Anwar, S. Sakuma, A. Tagiri, U. Lundqvist, M. Pourkheirandish, T. Rutten, C. Seiler, A. Himmelbach, R. Ariyadasa, H.M. Youssef, N. Stein, N. Sreenivasulu, T. Komatsuda, Schnurbusch T. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Academic Sciences U S A. 110(32):13198-203, 2013. [Five year impact factor: 10.6]

  • 41. N. Sreenivasulu* and T. Schnurbusch. A genetic playground for enhancing grain number in cereals. Trends in Plant Science 17: 91-101, 2012. [Five year impact factor: 10.73]

  • 42. V. Radchuk, J. Kumlehn, T. Rutten, N. Sreenivasulu, R. Radchuk, H. Rolletschek, C. Herrfurth, I. Feussner and L. Borisjuk. Fertility in barley flowers depends on jekyll functions in male and female sporophytes. New Phytologist 194:142-157, 2012. [Five year impact factor: 6.59]

  • 43. G. Melkus, H. Rolletschek, J. Fuchs, V. Radchuk, E. Grafahrend-Belau, N. Sreenivasulu, T. Rutten, D. Weier, N. Heinzel, F. Schreiber, T. Altmann, P.M. Jakob, L. Borisjuk. Dynamic (13) C/(1) H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnology Journal 9: 1022-1037, 2011. [Five year impact factor: 6.3]

  • 44. N. Sreenivasulu*, L. Borisjuk, B. Junker, H.P. Mock, H. Rolletschek, U. Seiffert, W. Weschke, and U. Wobus. Barley grain development: towards an integrative view. International Review of Cell and Molecular Biology 281: 49-89, 2010. [Five year impact factor: 4.95] [Cover page title published from this article]

  • 45. N. Sreenivasulu, V. V. Radchuk, B. Grimm, L. Borisjuk, D. Weier, J. Fuchs, O. Miersch, B. Usadel, U. Wobus, and W. Weschke. The predicted role of ABA in endosperm cell cycle regulation as revealed by analysis of the maternal effect barley mutant seg8 defected in starch accumulation. The Plant Journal 64: 589-603, 2010. [Five year impact factor: 7.32]

  • 46. S. Sharma, N. Sreenivasulu, V.T. Harshavardhan, C. Seiler, S. Sharma, Z.N. Khalil, E. Akhunov, S.K. Sehgal, M.S. Röder. Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biology 10: 134, 2010. [Five year impact factor: 4.32]

  • 47. N. Weichert, I. Saalbach, H. Weichert, S. Kohl, A. Erban, J. Kopka, B. Hause, A. Varshney, N. Sreenivasulu, M. Strickert, J. Kumlehn, W. Weschke and H. Weber. Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiology 152: 698-710, 2010. [Five year impact factor: 7.01] [This article has been selected for focus collections “Plants Systems Biology 2010”]

  • 48. V. V. Radchuk, L. Borisjuk, N. Sreenivasulu, K. Mercx, H.P. Mock, H. Rolletschek, U. Wobus, and W. Weschke. Spatio-temporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiology 150: 190-204, 2009. [Five year impact factor: 7.01]

  • 49. C. Pietsch+, N. Sreenivasulu+, U. Wobus, and M. Röder. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling. BMC Plant Biology 9: 4, 2009. [Five year impact factor: 4.32] + Contributed Equally

  • 50. J. Thiel, D. Weier, N. Sreenivasulu, M. Strickert, N. Weichert, M. Melzer, T. Czauderna, U. Wobus, H. Weber, and W. Weschke. A microdissection-based transcriptome study of nucellar projection and endosperm transfer cells in developing barley grains revealed hormone specific regulatory networks of cellular differentiation and function. Plant Physiology 148: 1436-1452, 2008. [Five year impact factor: 7.01]

  • 51. H.S. Balyan, N. Sreenivasulu, O. Riera-Lizarazu, P. Azhaguvel, and S.F. Kianian. Mutagenesis and high-throughput functional genomics in cereal crops: Current status. Advances in Agronomy 98: 357-414, 2008. [Five year impact factor: 5.0]

  • 52. N. Sreenivasulu*, A. Graner, and U. Wobus. Barley Genomics: An Overview, International Journal of Plant Genomics Volume 2008, Article ID 486258, 13 pages, 2008.

  • 53. N. Sreenivasulu*, B. Usadel, A. Winter, V. Radchuk, U. Scholz, N. Stein, W. Weschke, M. Strickert, T. J. Close, M. Stitt, A. Graner, and U. Wobus. Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiology 146: 1738-1758, 2008. [Five year impact factor: 7.01] [This article has been selected for focus collections “Plants Systems Biology 2010”]

  • 54. T. Neuberger+, N. Sreenivasulu+, M. Rokitta, H. Rolletschek, C. Göbel, T. Rutten, V. Radchuk, I. Feussner, U. Wobus, P. Jakob, A. Webb, L. Borisjuk. Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnology Journal 6: 31-45, 2008. [Five year impact factor: 4.87] + Contributed Equally

  • 55. V. Radchuk, N. Sreenivasulu, B. Yaroslav, and W. Weschke. Cloning and expression of the tubulin genes in barley. Cell Biology International 32(5): 557-559, 2008. [Five year impact factor: 1.8]

  • 56. V. Radchuk, N. Sreenivasulu, B. Yaroslav, and W. Weschke. Distinct tubulin genes are differentially expressed during barley grain development. Physiologia Plantarum 131(4): 571-580, 2007. [Five year impact factor: 3.06]

  • 57. N. Sreenivasulu, V. Radchuk, M. Strickert, O. Miersch, W. Weschke and U. Wobus. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. The Plant Journal 47(2): 310-327, 2006. [Five year impact factor: 7.32] [Cover page title published from this article]

  • 58. V. Radchuk, N. Sreenivasulu, R.I. Radchuk, U. Wobus and W. Weschke. The methylation cycle and its possible function during barley endosperm development. Plant Molecular Biology 59(2): 289-306, 2005. [Five year impact factor: 4.25]

  • 59. N. Sreenivasulu, L. Altschmied, V. Radchuk, S. Gubatz, U. Wobus and W. Weschke. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. The Plant Journal 37 (4): 539-553, 2004. [Five year impact factor: 7.32]

  • 60. H. Zhang+, N. Sreenivasulu+, W. Weschke, N. Stein, S. Rudd, V. Radchuk, E. Potokina, U. Scholz, P. Schweizer, U. Zierold, P. Langridge, R.K. Varshney, U. Wobus and A. Graner. Large-Scale Analysis of the Barley Transcriptome Based on Expressed Sequence Tags (ESTs). The Plant Journal 40 (2): 276-290, 2004. [Five year impact factor: 7.32] + Contributed Equally

  • 61. E. Potokina, M. Caspers, M. Prasad, R. Kota, H. Zhang, N. Sreenivasulu, M. Wang and A. Graner. Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.) Molecular Breeding 14 (2): 153-170, 2004. [Five year impact factor: 2.53]

  • 62. N. Sreenivasulu, L. Altschmied, R. Panitz, U. Hähnel, W. Michalek, W. Weschke and U. Wobus. Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Molecular Genetics and Genomics 266: 758-767, 2002b. [Five year impact factor: 2. 67]

  • 63. N. Sreenivasulu, P.B. Kavi Kishor, R.K. Varshney and L. Altschmied. Mining functional information from cereal genomes- the utility of expressed sequence tags (ESTs)- (Review article) Current Science 83 (8): 1-9, 2002a. [Five year impact factor: 1.16]

  • 64. E. Potokina, N. Sreenivasulu, L. Altschmied, W. Michalek and A. Graner. Differential gene expression during seed germination in barley (Hordeum vulgare L). Functional and Integrative Genomics 2: 28-39, 2002. [Five year impact factor: 3.74]


II. Stress Tolerance


  • 65. J. Xu, A. Henry, N, Sreenivasulu*. Rice yield formation under high day and night temperatures-A prerequisite to ensure future food security. Plant Cell and Environment 43(7):1595-1608, 2020. doi: 10.1111/pce.13748.

  • 66. H. Ji, S.R. Kim, Y.H. Kim, J.P. Suh, H.M. Park, N.Sreenivasulu, G. Misra, S.M. Kim, S.L. Hechanova, H. Kim, G.S. Lee, U.H. Yoon, T.H. Kim, H. Lim, S.C. Suh, J. Yang,G. An, K.K. Jena. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest. Scientific Reports. 6:34376, 2016; doi: 10.1038/srep34376. [Five year impact factor: 5.57]

  • 67. S.A. Hosseini, M.R. Hajirezaei, C. Seiler, N. Sreenivasulu and N. Von Wirén. A potential role of flag leaf potassium in conferring tolerance to drought-induced leaf senescence in barley. Frontiers in Plant Science 7: 206, 2016; doi:10.3389/fpls.2016.00206 [Five year impact factor: 3.9]

  • 68. S. Dixit, A.K. Biswal, A. Min, A. Henry, R.H. Oane, M.L. Raorane, T. Longkumer, I.M. Pabuayon, S.K. Mutte, A.R. Vardarajan, B. Miro, G. Govindan, B. Albano-Enriquez, M. Pueffeld, N. Sreenivasulu, I. Slamet-Loedin, K. Sundarvelpandian, Y.C. Tsai, S. Raghuvanshi, Y.I.C. Hsing, A. Kumar and A. Kohli. Action of multiple intra-QTL genes concerted around a colocalized transcription factor underpins a large effect QTL. Scientific Reports 5: 15183, 2015; doi: 10.1038/srep15183. [Five year impact factor: 5.57]

  • 69. N. Sreenivasulu*, V.M. Jr Butardo, G. Misra, R.P. Cuevas, R. Anacleto and P.B. Kavi Kishor. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot. 66(7):1737-1748, 2015. [Five year impact factor: 5.3]

  • 70. S.V.K. Jagadish, P.B. Kavi Kishor, R. Bahuguna, N. von Wiren and N. Sreenivasulu*. Staying alive or going to die during terminal senescence- An enigma surrounding yield stability. Frontiers in Plant Science 6: 1070, 2015. doi: 10.3389/fpls.2015.01070 [Five year impact factor: 3.9]

  • 71. P.B. Kavi Kishor, P. Hima Kumari, M.S. Sunita, N. Sreenivasulu. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in Plant Science 6: 544, 2015. doi: 10.3389/fpls.2015.00544 [Five year impact factor: 3.9]

  • 72. M.L. Raorane, I.M. Pabuayon, B. Miro, R. Kalladan, M. Reza-Hajirezai, R.H. Oane, A. Kumar, N. Sreenivasulu, A. Henry, A. Kohli. Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1 : altered roots and flag leaves but similar spikelets of rice under drought. Molecular Breeding 35(6):138, 2015. [Five year impact factor: 3.30]

  • 73. V.T. Harshavardhan, L. Van Son, C. Seiler, A. Junker, K. Weigelt-Fischer, C. Klukas, T. Altmann, N. Sreenivasulu, H. Baumlein, M. Kuhlmann. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS One. 2014 Oct 15;9(10):e110065. doi: 10.1371/journal.pone.0110065. eCollection 2014. [Five year impact factor: 3.730]

  • 74. C. Seiler, V.T. Harshavardhan, P.S. Reddy, G. Hensel, J. Kumlehn, L. -Lippold, K. Rajesh, V. Korzun, U. Wobus, J. Lee, G. Selvaraj, N. Sreenivasulu*. Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress. Plant Physiol. 2014 Apr;164(4):1677-96. [Five year impact factor: 7.084] [This article has been selected for focus collections “Water 2014”]

  • 75. P.S. Reddy, P.B. Kavi Kishor, C. Seiler, M. Kuhlmann, L. Eschen-Lippold, J. Lee, M.K. Reddy, N. Sreenivasulu*. Unraveling Regulation of the Small Heat Shock Proteins by the Heat Shock Factor HvHsfB2c in Barley: Its Implications in Drought Stress Response and Seed Development. PLoS One. 2014 Mar 4;9(3):e89125. doi: 10.1371/journal.pone.0089125. [Five year impact factor: 3.730]

  • 76. P.B. Kavi Kishor and N. Sreenivasulu*. Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue? Plant Cell and Environment 37(2): 300-311, 2014. [Five year impact factor: 5.135]

  • 77. R. Kalladan, S. Worch, H. Rolletschek, V.T. Harshavardhan, L. Kunze, C. Seiler, N. Sreenivasulu and M.S. Röder. Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Molecular Breeding 32: 71-90, 2013. [Five year impact factor: 3.30]

  • 78. A. Kohli, N. Sreenivasulu, P. Lakshmanan and P.P. Kumar. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32(7): 945-957, 2013. [Five year impact factor: 2.826]

  • 79. S. Friedel, B. Usadel, N. Von Wirén and N. Sreenivasulu*. Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. Frontiers in Plant Science 3: 294, 2012. [Five year impact factor: 3.9]

  • 80. N. Sreenivasulu*, V.T. Harshavardhan, G. Govind, C. Seiler and A. Kohli. Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term stress? Gene 506: 265-273, 2012. [Five year impact factor: 2.61]

  • 81. R.R. Mir, M. Zaman-Allah, N. Sreenivasulu, R. Trethowan, R.K. Varshney. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics 125: 625-645, 2012. [Five year impact factor: 3.78]

  • 82. S. Worch, R. Kalladan, V.T. Harshavardhan, C. Pietsch, V. Korzun, L. Kuntze, A. Borner, U. Wobus, M.S. Roder and N. Sreenivasulu*. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biology 11: 1, 2011. [Five year impact factor: 4.32]

  • 83. C. Seiler, V.T. Harshavardhan, K. Rajesh, M. Strickert, H. Rolletschek, U.Scholz, U., Wobus and N. Sreenivasulu*. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought stress conditions. Journal of Experimental Botany 62: 2615-2632, 2011. [Five year impact factor: 5.3]

  • 84. G. Govind, C. Seiler, U. Wobus, N. Sreenivasulu*. Importance of ABA homeostasis under terminal drought stress in regulating grain filling events. Plant Signaling & Behavior, 6(8): 1228-1231, 2011. [Five year impact factor: 2.784]

  • 85. S. Puranik, S.Jha, P.S. Srivastava, N. Sreenivasulu and M. Prasad. Comparative transcriptome of salt-tolerant and salt-sensitive foxtail millet cultivars in response to short term salinity stress. Journal of Plant Physiology, 168: 280-287, 2011. [Five year impact factor: 2.85]

  • 86. C. Lata, S. Jha, V. Dixit, N. Sreenivasulu and M. Prasad. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma, 248: 817-828, 2011. [Five year impact factor: 1.67]

  • 87. G. Govind, V.T. Harshavardhan, J.K. Patricia, D.R. Iyer, M.S. Kumar, N. Sreenivasulu and M. Udayakumar. Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Molecular Genetics and Genomics 281(6): 591-605, 2009. [Five year impact factor: 2. 67]

  • 88. N. Sreenivasulu*, S.K. Sopory and P.B. Kavi Kishor. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. (Review article) Gene 388(1-2): 1-13, 2007. [Five year impact factor: 2. 61] [Highly cited article]

  • 89. G. Jogeswar, N.M. Jakka, P.S. Reddy, K.R. Rao, J.V. Rao, N. Sreenivasulu and P.B. Kavi Kishor. Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiologia Plantarum 28: 465-475, 2006. [Five year impact factor: 1. 34]

  • 90. P. B. Kavi Kishor, S. Sangam, R. N. Amrutha, P. Sri Laxmi, K. R. Naidu, K. R. S. S. Rao, Sreenath Rao, K. J. Reddy, P. Theriappan and N. Sreenivasulu. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. (Review article) Current Science 88(3): 424-438, 2005. [Five year impact factor: 1.16] [Highly cited article]

  • 91. S. Sangam, D. Jayasree, K.J. Reddy, P.V.B. Chari, N. Sreenivasulu, and P.B. Kavi Kishor. Salt tolerance in plants - transgenic approaches (Review article) Journal of Plant Biotechnology 7(1): 1-15, 2005.

  • 92. N. Sreenivasulu, M. Miranda, H.S. Prakash, U. Wobus and W. Weschke. Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line Journal of Plant Physiology 161 (4): 467-477, 2004. [Five year impact factor: 2.85]

  • 93. N. Sreenivasulu, B. Grimm, U. Wobus and W. Weschke. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italaica). Physiologia plantarum 109: 435-442, 2000. [Five year impact factor: 3.06]

  • 94. S. G. Kumar, K.V. Madhusudhan, N. Sreenivasulu and C. Sudhakar. Stress responses in two genotypes of mulberry (Morus alba L.) under NaCl salinity. Indian Journal of Experimental Biology 38: 192-195, 2000. [Five year impact factor: 0.73]

  • 95. N. Sreenivasulu, S. Ramanjulu, K.R. Kini, H.S. Prakash, H.S. Shetty, H.S. Savithri and C. Sudhakar. Peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of foxtail millet with differential salt tolerance. Plant Science 141: 1-9, 1999. [Five year impact factor: 2.55]

  • 96. S. Ramanjulu, N. Sreenivasulu, S. G. Kumar and C. Sudhakar. Photosynthetic characteristics in mulberry during water stress and rewatering. Photosynthetica 35: 259-263, 1998. [Five year impact factor: 1.21]

  • 97. S. Ramanjulu, N. Sreenivasulu and C. Sudhakar. Effect of Water stress on photosynthesis in two mulberry genotypes with differential drought tolerance. Photosynthetica 35: 279-283, 1998. [Five year impact factor: 1.21]


III. Biology – Computational Applications Interface


  • 98. M. Lohse, A. Nunes-Nesi, P. Krüger, A. Nagel, J.Hannemann, F.M. Giorgi, L. Childs, S. Osorio-Algar, D. Walther, J. Selbig, N. Sreenivasulu, M. Stitt, A. R. Fernie, B. Usadel. Robin: An intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiology 153: 642-651, 2010. [Five year impact factor: 7.01]

  • 99. M. Strickert+, N. Sreenivasulu+, B. Usadel, U. Seiffert. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue. BMC Bioinformatics 8: 165, 2007. [Five year impact factor: 3.78] + Contributed Equally

  • 100. B. Usadel, A. Nagel, D. Steinhauser, Y. Gibon, O.E. Bläsing, H. Redestig, N. Sreenivasulu, L. Krall, M.A. Hannah, F. Poree, A.R. Fernie and M. Stitt. PageMan an Interactive Ontology Tool to Generate, Display, and Annotate Overview Graphs for Profiling Experiments. BMC Bioinformatics 7: 535, 2006. [Five year impact factor: 3.78]

  • 101. M. Strickert, N. Sreenivasulu, S. Peterek, W. Weschke, H-P. Mock and U. Seiffert. Unsupervised feature selection for biomarker identification in chromatography and gene expression data. Lecture notes in Artificial Intelligence 4087: 274-285, 2006.

  • 102. M. Strickert, U. Seiffert, N. Sreenivasulu, W. Weschke, T. Villmann and B. Hammer. Generalised Relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neuro computing 69: 651-659, 2006. [Five year impact factor: 1.44]

  • 103. M. Strickert, S. Teichmann, N. Sreenivasulu and U. Seiffert. High-throughput multidimensional scaling (HiT-MDS) for cDNA array expression data. Lecture notes in Computer Science 3696: 625-633, 2005.


Book Chapters

    • 1. A. Regina, C. Acuin, N. Sreenivasulu Heirloom rices a repertoire of genetic wealth. ©Geography and You, N. Meah et al. (eds.), Food Imperatives, Volume 19(24), No.135 47-50, 2019.

    • 2. G. Rajashekar, G. Jawahar, N. Jalaja, S.A. Kumar, P.H. Kumari, D.L. Punita, A.R. Karumanchi, P.S. Reddy, P. Rathnagiri, N. Sreenivasulu, P.B.K. Kishor Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. ©Elsewhere, ScienceDirect, Wood Head Publishing, M.I.R. Khan et al. (eds.), Plant Signaling Molecules, 1st Edition, 417-436, 2019.

    • 3. G. Jawahar, G. Rajashekar, P. Maheshwari, D.L. Punita, N. Jalaja, P.H. Kumari, S.A. Kumar, R. Afreen, A.R. Karumanchi, P. Rathnagiri, N. Sreenivasulu, P.B.K. Kishor Osmolyte diversity, distribution and their biosynthetic pathways. ©Elsewhere, ScienceDirect, Wood Head Publishing, M.I.R. Khan et al. (eds.), Plant Signaling Molecules, 1st Edition, 449-458, 2019.

    • 4. V.M. Jr. Butardo, N. Sreenivasulu. Improving Head Rice Yield and Milling Quality: State-of-the-Art and Future Prospects. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 1-18. doi: 10.1007/978-1-4939-8914-0_1.

    • 5. V.M. Jr. Butardo, N. Sreenivasulu, B.O. Juliano. Improving Rice Grain Quality: State-of-the-Art and Future Prospects. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 19-55, 2019. doi: 10.1007/978-1-4939-8914-0_2.

    • 6. J.R. Lapis, R.P.O. Cuevas, N. Sreenivasulu, L. Molina. Measuring Head Rice Recovery in Rice. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 89-98, 2019. doi: 10.1007/978-1-4939-8914-0_5.

    • 7. M.V. Santos, R.P.O. Cuevas, N. Sreenivasulu, L. Molina. Measurement of Rice Grain Dimensions and Chalkiness, and Rice Grain Elongation Using Image Analysis. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 99-108, 2019. doi: 10.1007/978-1-4939-8914-0_6.

    • 8. R. Jimenez, L. Molina, I. Zarei, J.R. Lapis, R. Chavez, R.P.O. Cuevas, N. Sreenivasulu. Method Development of Near-Infrared Spectroscopy Approaches for Nondestructive and Rapid Estimation of Total Protein in Brown Rice Flour. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892:109-135, 2019. doi: 10.1007/978-1-4939-8914-0_7.

    • 9. L. Molina, R. Jimenez, N. Sreenivasulu, R.P.O. Cuevas. Multi-Dimensional Cooking Quality Classification Using Routine Quality Evaluation Methods. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892:137-150, 2019. doi: 10.1007/978-1-4939-8914-0_8.

    • 10. R.P.O. Cuevas, P.S. Takhar, N. Sreenivasulu. Characterization of Mechanical Texture Attributes of Cooked Milled Rice by Texture Profile Analyses and Unraveling Viscoelasticity Properties Through Rheometry. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892:151-167, 2019. doi: 10.1007/978-1-4939-8914-0_9.

    • 11. C. Llorente, R. Jimenez, Jackie, Y. Brotman, A.R. Fernie, N. Sreenivasulu. Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892:187-199, 2019. doi: 10.1007/978-1-4939-8914-0_11.

    • 12. C.M. Alhambra, S. Dhital, N. Sreenivasulu, V.M. Jr. Butardo. Quantifying Grain Digestibility of Starch Fractions in Milled Rice. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 241-252, 2019. doi: 10.1007/978-1-4939-8914-0_13.

    • 13. L. Molina, J.R. Lapis, N. Sreenivasulu, R.P.O. Cuevas. Determination of Macronutrient and Micronutrient Content in Rice Grains Using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 253-264, 2019. doi: 10.1007/978-1-4939-8914-0_14.

    • 14. L. Molina, J.R. Lapis, N. Sreenivasulu, R.P.O. Cuevas. Determination of Cadmium Concentration in Milled and Brown Rice Grains Using Graphite Furnace Atomic Absorption Spectrometry. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 265-275, 2019. doi: 10.1007/978-1-4939-8914-0_15.

    • 15. M. Püffeld, C. Seiler, M. Kuhlmann, N. Sreenivasulu, V.M. Jr.Butardo. Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 277-300, 2019. doi: 10.1007/978-1-4939-8914-0_16.

    • 16. E. Pasion, R. Aguila, N. Sreenivasulu, R. Anacleto. Novel Imaging Techniques to Analyze Panicle Architecture. Nese Sreenivasulu (ed.), Rice Grain Quality: Methods and Protocols, Series Methods in Molecular Biology1892: 75-88, 2019. doi: 10.1007/978-1-4939-8914-0_4.

    • 17. V. T. Harshavardhan, G. Govind, R. Kalladan, N. Sreenivasulu, C-Y. Hong Cross-protection by oxidative stress: Improving tolerance to abiotic stresses including salinity. ©Springer International Publishing AG, part of Springer Nature V. Kumar et al. (eds.), Salinity Responses and Tolerance in Plants, Volume 1, 283-305, 2018.

    • 18. J.P. Matthews, S. Gemme, H-J. Huebschmann, C. Llorente, R. Jiminez, N. Sreenivasulu Metabolomics of rice genotypes using GC-MS/MS In: Aoolication note 10419 Thermo Scientific, pp. 1-9, 2014.

    • 19. P.S. Reddy, V. Vandez, N. Sreenivasulu and P.B. Kavi Kishor Tackling the heat-stress tolerance in crop plants: A bioinformatics approach. In: Agricultural Bioinformatics, Eds. P. B. Kavi Kishor et al., PP. 33-57, 2014.

    • 20. M. Gils, N. Sreenivasulu and A. Graner. Molecular breeding for malting quality. In: Barley Chemistry and Technology, 2nd Edition. Eds: P.R. Shewry and S. Ullrich, AACCI Press, pp. 293-309, 2014.

    • 21. P.B. Kavi Kishor, R. Kalladan, P.S. Reddy, C. Seiler and N. Sreenivasulu. Drought stress tolerance mechanisms in barley and its relevance to cereals. In: Biotechnology in Agriculture and Forestry. Eds: J. Kumlein and N. Stein, Springer, Heidelberg, pp. 161-179, 2014.

    • 22. P.S. Reddy and N. Sreenivasulu Different Omics Approaches in Cereals and their Possible Implications for Developing a System Biology Approach to Study the Mechanism of Abiotic Stress Tolerance In: Cereal Genomics II, Eds. P. K. Gupta and R. K. Varshney, Springer, Heidelberg, pp. 177-214, 2013.

    • 23. H. Weber, N. Sreenivasulu and W. Weschke.The Molecular Physiology of Seed Maturation and Seed Storage Protein Biosynthesis. In: Plant Developmental Biology ­ Biotechnological Perspectives: Vol. 2, Eds.: Eng-Chong Pua and Michael Davey, Springer, Heidelberg, pp. 83-104, 2010.

    • 24. N. Sreenivasulu*, R. Sunkar, U. Wobus and M. Strickert. Array platforms and bioinformatic tools for the analysis of the plant transcriptome in response to abiotic stress. In: Plant Stress Tolerance, Series: Methods in Molecular Biology, 639: 71-93, 2010.

    • 25. N. Sreenivasulu, M. Röder and U. Wobus. Trockenstress – eine Suche nach den Ursachen und nach neuen Wegen zur Züchtung trockentoleranter Getreide. In: M. Arlt and D. Büssis (Eds) GENOMXPRESS. 4: pp. 4-6, 2010.

    • 26. U. Wobus, H.P. Mock, C. Pietsch, V. Radchuk, M. Röder, F. Schreiber, U. Seiffert, N. Sreenivasulu, M. Strickert, W. Weschke and K. Witzel. Barley as a model and a crop: Gene expression networks determining seed traits (GABI-SEED II). In: GABI – The German Plant Genome Research Program Progress Report 2004-2007. Published by GABI Managing office, Potsdam-Golm. pp. 76-83, 2008.

    • 27. M. Strickert, N. Sreenivasulu, T. Villmann and B. Hammer. Robust centroid-based clustering using derivatives of pearson correlation. In: P. Encarnacao and A. Veloso, editors, Proceedings of the 1st International Conference on Bio-inspired Systems and Signal Processing ‘BIOSIGNALS2008’ pp. 197-203, 2008.

    • 28. W. Weschke, H.P. Mock, C. Pietsch, V. Radchuk, M. Röder, F. Schreiber, U. Seiffert, N. Sreenivasulu, M. Strickert, and K. Witzel and U. Wobus. Genetical Genomics: der Gerstenkornentwicklung – von der Geexpression zu landwirtschaftlich bedeutsamen Merkmalen. In: J. Freitag (Ed) GENOMXPRESS. 1: pp. 12-16, 2007.

    • 29. U. Wobus, H.P. Mock, C. Pietsch, V. Radchuk, M. Röder, F. Schreiber, U. Seiffert, N. Sreenivasulu, M. Strickert, W. Weschke and K. Witzel. GABI-SEED: Genetische Grundlagen Komplexer agronomischer Merkmale im Getreidekorn entschlüsseln. In: J. Freitag (Ed) GENOMXPRESS 4: pp 19, 2006.

    • 30. U. Wobus, N. Sreenivasulu, L. Borisjuk, H. Rolletschek, R. Panitz, S. Gubatz and W. Weschke. Molecular physiology and genomics of developing barley grains. In: Recent Research Developments in Plant Molecular Biology 37/661 (2): pp. 1-29. 2005.

    • 31. W. Weschke, N. Sreenivasulu, V. Radchuk, S. Gubatz and U. Wobus. Functional genomics of barley seed development. In: GABI – The German Plant Genome Research Program Progress Report 1999-2004. Published by GABI Managing office, Potsdam-Golm. pp. 140-141. 2004.

    • 32. N. Sreenivasulu, R.K. Varshney, P.B. Kavi Kishor and W. Weschke. Tolerance to abiotic stress in cereals: A functional genomics approach. In: P.K. Gupta and R.K. Varshney (Eds) Cereal Genomics. Springer, Heidelberg, pp. 483-514, 2004.


Invited speaker in International conferences

Click here see the details of Invited talks

List of posters presented in International conferences

Click here to see List of posters presented in International conferences

COPYRIGHT NOTICE:

Our website and all the materials published within the webpages of this site are protected by copyright. Permission is granted to view the documents within this site for private and educational use only. Neither modification nor reproduction of the material is allowed without obtaining a written permission.